skip to main content


Search for: All records

Creators/Authors contains: "Whitelegge, Julian P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract Here we report the first recovery, sequencing, and identification of fossil biomineral proteins from a Pleistocene fossil invertebrate, the stony coral Orbicella annularis . This fossil retains total hydrolysable amino acids of a roughly similar composition to extracts from modern O. annularis skeletons, with the amino acid data rich in Asx (Asp + Asn) and Glx (Glu + Gln) typical of invertebrate skeletal proteins. It also retains several proteins, including a highly acidic protein, also known from modern coral skeletal proteomes that we sequenced by LC–MS/MS over multiple trials in the best-preserved fossil coral specimen. A combination of degradation or amino acid racemization inhibition of trypsin digestion appears to limit greater recovery. Nevertheless, our workflow determines optimal samples for effective sequencing of fossil coral proteins, allowing comparison of modern and fossil invertebrate protein sequences, and will likely lead to further improvements of the methods. Sequencing of endogenous organic molecules in fossil invertebrate biominerals provides an ancient record of composition, potentially clarifying evolutionary changes and biotic responses to paleoenvironments. 
    more » « less
  2. null (Ed.)
  3. Abstract

    A variety of rodents have been used as experimental animals in metabolic studies of plasma lipids and lipoproteins. These studies have included understanding the functional role of apolipoprotein A‐I, the major protein on the surface of HDL. Reviewing the genomic database for entries for rodentapoA‐Igenes, it was discovered that the naked mole‐rat (Heterocephalus glaber) gene encoded a protein with a cysteine at residue 28. Previously, two cases have been reported in which human heterozygotes had apoA‐I with cysteine at residues 173 (apoA‐I Milano) or at 151 (apoA‐I Paris). Interestingly, both groups, in spite of having low levels of HDL and moderately elevated plasma triacylglycerols, had no evidence of cardiovascular disease. Moreover, the presence of the cysteine enabled the apoA‐I to form both homodimers and heterodimers. Prior to this report, no other mammalian apoA‐I has been found with a cysteine in its sequence. In addition, the encoded naked mole‐rat protein had different amino acids at sites that were conserved in all other mammals. These differences resulted in naked mole‐rat apoA‐I having an unexpected neutral pI value, whereas other mammalian apoA‐I have negative pI values. To verify these sequence differences and to determine if the N‐terminal location of C28 precluded dimer formation, we conducted mass spectrometry analyses of apoA‐I and other proteins associated with HDL. Consistent with the genomic data, our analyses confirmed the presence of C28 and the formation of a homodimer. Analysis of plasma lipids surprisingly revealed a profile similar to the human heterozygotes.

     
    more » « less